Search results for "Inverse function"

showing 4 items of 4 documents

Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

2003

Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic $L\ifmmode\times\else\texttimes\fi{}L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ Ising lattices with nearest neighbor ferromagnetic exchange and four free $L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ surfaces, at which antisymmetric surface fields $\ifmmode\pm\else\textpm\fi{}{H}_{s}$ act, are studied for a wide range of linear dimensions $(4l~Ll~320,30l~{L}_{y}l~1000),$ in an attempt to clarify finite size effects on the wedge filling transition in this ``double-wedge'' geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a li…

CombinatoricsMagnetizationCondensed matter physicsFerromagnetismTransition temperatureLattice (order)Periodic boundary conditionsIsing modelInverse functionCubic crystal systemMathematicsPhysical Review E
researchProduct

Some Nonlinear Methods in Fréchet Operator Rings and Ψ*-Algebras

1995

Two different inverse function theorems, one of Nash-Moser type, the other due to H. Omori, are extended to obtain special surjectivity results in locally convex and locally pseudo-convex Frechet algebras generated by group actions and derivations. In particular, the following factorization problem is discussed. Let Ψ be a locally pseudo-convex Frechet algebra with unit e and T+ : Ψ Ψ a continuous linear operator. Does there exist a neighborhood U of 0 such that the equation where T- = IΨ- T, has a solution x ∈ Ψ for every y ∈ U?

Discrete mathematicsGroup actionPure mathematicsGeneral MathematicsOperator (physics)Regular polygonInverse functionType (model theory)Fréchet algebraUnit (ring theory)Continuous linear operatorMathematicsMathematische Nachrichten
researchProduct

Infinite Dimensional Banach spaces of functions with nonlinear properties

2010

The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on R(n) failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.

Inverse function theoremMathematics::Functional AnalysisMathematics(all)Approximation propertyGeneral MathematicsMathematical analysisInfinite-dimensional vector functionEberlein–Šmulian theoremBanach manifold/dk/atira/pure/subjectarea/asjc/2600Interpolation spaceLp spaceC0-semigroupMathematics
researchProduct

Invertibility of Sobolev mappings under minimal hypotheses

2010

Abstract We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W 1 , n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.

Sobolev spaceInverse function theoremDiscrete mathematicsDistortion functionDifferential inclusionIntegrable systemApplied MathematicsLocal homeomorphismDifferentiable functionHomeomorphismMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
researchProduct